a2 United States Patent

US009239867B2

(10) Patent No.: US 9,239,867 B2

Guirguis et al. (45) Date of Patent: Jan. 19, 2016
(54) SYSTEM AND METHOD FOR FAST (56) References Cited
IDENTIFICATION OF VARIABLE ROLES
DURING INITIAL DATA EXPLORATION U.S. PATENT DOCUMENTS
(71) Applicant: SAS Institute Inc., Cary, NC (US) 2014/0237001 Al 1/2014 Guirguis et al.
OTHER PUBLICATIONS
(72) Inventors: Georges H. Guirguis, Cary, NC (US);
Scott Pope, Raleigh, NC (US) G. Williams, Rattle: A Data Mining GUI for R, The R Jounal vol. 1/2,
ISSN 2073-4859, Dec. 2009, pp. 45-55.
(73) Assignee: SAS Institute Inc., Cary, NC (US) The Basics of SAS Enterprise Miner 5.2, undated, pp. 1-46.
(*) Notice: Subject to any disclaimer, the term of this Primary Examiner — Truo.ng Vo .
patent is extended or adjusted under 35 (74) Attorney, Agent, or Firm — Bell & Manning, LLC
U.S.C. 154(b) by O days. (57) ABSTRACT
(21) Appl. No.: 14/536,829 Systems and methods are provided for identifying data vari-
able roles during initial data exploration. A variable type,
(22) Filed: Nov. 10, 2014 unique data value count values, and an overflow count value
are determined for a variable. The unique data value count
(65) Prior Publication Data values include a number of occurrences of each of a plurality
of unique data values for the variable in a data set. The
US 2015/0081735 Al Mar. 19, 2015 :
overflow count value is a number of occurrences of data
values other than the plurality of unique data values for the
Related U.S. Application Data variable in the data set. When a number of the plurality of
L o unique data values is greater than a value for a high cardinality
(63) Continuation-in-part of application No. 13/772,404, threshold, the variable is determined to be a high cardinality
filed on Feb. 21, 2013, now Pat. No. 8,918,410. variable. When the variable is not determined to be the high
cardinality variable, a class variable role is assigned to the
(1) Int. Cl. variable. When the variable is determined to be the high
GOGF 17/30 (2006.01) cardinality variable, Whether or not the variable is a numeric
G06Q 10/06 (2012.01) variable type is determined based on the determined variable
(52) US.CL type. When the variable is determined to not be the numeric
CPC GO6F 17/30539 (2013.01); GO6Q 10/06 variable type, the overflow count value is compared to the
(2013.01) unique data value count values to determine whether or not
(58) Field of Classification Search rare visible values occurred for the variable. When the deter-

CPC ..ot GOG6F 17/30386; GOGF 17/30424,
GOG6F 17/30241; GOGF 17/30864; GOGF
17/30867;, GOG6F 17/30011

See application file for complete search history.

12-\

USER
COMPUTER(S)

mination is that rare visible values occurred for the variable,
a record identifier variable role is assigned to the variable.

33 Claims, 21 Drawing Sheets

‘18\

COMPUTER-READABLE
MEMORY

it

N ——
GRID BASED

DATA
COMPUTING ENVIRONMENT STORES

US 9,239,867 B2

Sheet 1 of 21

Jan. 19, 2016

U.S. Patent

91

S3¥01S
vivl

| B4

INIWNOMIANT NI LNdWOD
43Sv8 a1y9

~ ANOW3W
318Y0V34-431NdWO3

e

Pl

(S)

d31NdW03

4350

-z

US 9,239,867 B2

Sheet 2 of 21

Jan. 19, 2016

U.S. Patent

¢ JNON IHOM

7

.@mm k

.J

ASOWIW

v
v [

40SS3204d
v1v0 300N

Z ‘b4

| 300N ¥rdoM

il

N

ASOWIN

0>

p2 |
s
HOSS3304d
Y1v0 300N

0 300N ¥3x0m

rd

~

ANOW3W
"
\\vm

405537084
Y1V0 300N

INZANOHIANT ONT INW0D
3Sva 0149

omu\x

| N A

AUOKW 3K

mmm .

_m

HOSS33048d
vivd 100¥

\\\\mm

NOTLYII\ddY

300N 100¥

IN3IT3

US 9,239,867 B2

Sheet 3 of 21

Jan. 19, 2016

U.S. Patent

135 vivo
WIldvd 40
SON033Y vivD

214

AYOW3W 378Y0V3Y
~4310dHW03

LNNO3
MO 1443A0

or "

SINNCGD 3NVA

Vi¥Q 3N0INN-
SANWA
Yivd 3N0IND -

JNLINYLS
Yiv0 031408

og—"

135 v1v0
WIidvd 40
SO¥0I3Y V1VO

Sk

AHOWIW 378Y0V3Y
~431NdR0T

INNOJ MO 443A0
031v0170SNOD

vv\\\ \\\mv

JANLINYLS v1IvO
031VCIT0SNO3

€ /fzmm

135 vivd 40

SOY033Y vivo

1708 INWA Y1VO ¥

L3S vivh

E
405S300¥d
YLY0 300N [
. AN
e ",
SINWA | | |
YV | m
mmo»:uw ¢ w
v W
J0SS308d N
1 VLYO 300N je—pf H052I008d i
YN 18Vd ,Uw
’ 1
e m
R .| H0SS33084 |,
SINIVA VIYO Yiv0 300N
130103 ‘

o

WIidvd 40
SO¥003Y viva,

S

US 9,239,867 B2

Sheet 4 of 21

Jan. 19, 2016

U.S. Patent

i b1

NOI11V3Iddy
IN3ITT 01 S1INS3y
(31v0I'10SNOT 14043y

)
2

SINNOD ONY
SANIVA YIVD

L3S ¥1va NI SICON Y1vQ
SITGYINVA 803 SINNOJ L WO¥J SLINS3Y NSV
ONY SINTVA ¥1VO ILYO01I0SNOT ONY 3AT323Y
o-\\\ moﬁ\\\
321S HILYE {S "914 *b+3) sI00N
SINIWNGISSY SI1BYINVA YIVO 40 A117vdN7d
ST3A3T XYW 135 VIV0 0L SMS¥1 NOISSY
wonx\\ vowa\\

//:v__

NOTLY3I1ddV IN3ITD
WONJ 1S3NB3Y 3A1II3Y

oot/

S318VIdYA
STIAIT XVM
138 vivQ

Nz

US 9,239,867 B2

Sheet 5 of 21

Jan. 19, 2016

U.S. Patent

9 b4

1~ 3008 0aIngD o1
SIS 14003 |

i

L3S VYO NI
SITGYIYYA H04 SINNOD
ONY SINTYA Y1VO

{L *914 *B+8)

(01 '914 '6°3)
39430 YLVO
$$3704d N1938

[

a1/

{6 914 b3}
SIFWL INN¥d
Sdv3 13ATT 31vodn

a1/ |

4
SNOTLYAN3SEO
$S3208d

/fzvmﬂ

J//rvm_

INIWNSISSY 31nJ3X3

L

| NOT LYWH0IN]
oma‘\w; 1SYI0v0H8 3A1303y

\mmH

G ‘b1

(9 ‘914 6°3)
SINIWNIISSY
LAVIS SHINIOM

//rmm_

(4)321S HILvE
SINIWNGISSY
S318Y [4VA
(u}STIATT XVK
135 ¥1v0
t0NI 1SYI0V048

1S HILVE
SINIHNOISSY STTEVINVA
STIATT XVH 135 ¥1v0

a

- §5304d
IN3WNIISSY
\ M8yl

U.S. Patent Jan. 19, 2016

START
ASSIENMENT
EXECUTION

PROCESS

> OBSERVATIONS
(B.g. FIG- 8)

UPDATE LEVEL CAPS
i PRUNE TREES
(e.g. FIG. 9)

Sheet 6 of 21 US 9,239,867 B2

e

144
Ve
MORE

OBSERV?ATION

YES

NO

SEND/RECEIVE nTH LEVEL
TO0 ALL OTHER WORKERS

o

142
\

ADJUST BINARY TREES

146~\\\
PRUNE TREES

{e.g.. FIGS. 9 OR 10}

UPDATE LEVEL CAPS

¥
152 ‘
BEGIN PROCESS
ﬂ\‘* DATA MERGE
(e‘g. FIG. 11}

SEND/RECEIVE nTH LEVEL
T0 ALL OTHER WORKERS

8"
/ff~150

Fig. 7

ADJUST BINARY TREES

U.S. Patent Jan. 19, 2016 Sheet 7 of 21 US 9,239,867 B2

START
OBSERVATION
PROCESSING

154

IS VALQE > CAP

158

CLEVEL ALREADY SEEN

156
v

INCREMENT
OTHER COUNT

162

ARE THERﬁ?n LEVELS

YES

rle“ //166
INSERT LEVEL " INSERT LEVEL, PRUNE
Y LARGEST, UPDATE OTHER
COUNT, UPDATE CAP

~ 160
D)

ADD T0 FREQUENCY

| 5;;\\\\\
| GBSERVATION b
PROCESSING

Fig. 8

U.S. Patent Jan. 19, 2016 Sheet 8 of 21

START UPDATE
LEVEL CAPS/
PRUNE TREE
PROCESS

BROAQOCAST TO OTHER WORKER
NODES THE MAXIMUM VALUE
IN EACH TREE IF TREE
HAS SIZE n

US 9,239,867 B2

/‘170

1 ///~l72

RECEIVE BROADCASTS FROM
OTHER WORKER NODES
CONTAINING THE MAXIMUM
VALUE IN THEIR TREES

|

/174

VALUE FOR A VARTABLE CONTAINED

NODE FOR VARIABLE, THEN
PRUNE THIS NODE'S TREE VALUE

FOR EACH TREE NODE, IF MINIMUM

BROADCAST IS GREATER THAN MAXIMUM
VALUE CONTAINED IN TREE IN THIS

IN

”“PROCESS COMPLETE
(TREE WITH n LEAST
LEVELS CREATED)

Fig. 9

U.S. Patent

Jan. 19, 2016

Sheet 9 of 21

START UPDATE Y
LEVEL CAPS/
PRUNE TREE

PROCESS

BROADCAST TO OTHER WORKER
NODES THE MINIMUM VALUE
IN EACH TREE IF TREE
HAS SIZE n

US 9,239,867 B2

//fl7l

l //-173

RECEIVE BROADCASTS FROM
OTHER WORKER NODES
CONTAINING THE MINIMUM
VALUE IN THEIR TREES

|

/175

FOR EACH TREE NODE, IF MAXIMUM
VALUE FOR A VARIABLE CONTAINED IN
BROADCAST IS LESS THAN MINIMUM
VALUE CONTAINED IN TREE IN THIS

NODE FOR VARIABLE, THEN

PRUNE THIS NODE'S TREL VALUEL

PROCESS COMPLETE
(TREE WITH n GREATEST
\. LEVELS CREATED)

Fig. 10

U.S. Patent Jan. 19, 2016

//*]?6
WORKER RECEIVES
1 LEVEL FROM GRID

1 //~I78
PROCESS LEVEL AS
;T OBSERVATION WITH FREG

~ 180

MORE %EVELS‘

NO

Fig. 11

Sheet 10 of 21

- 200
//,

CONTROL NODE RECEIVES|
USER REQUEST

l //~202

PROBLEM DESCRIPTION
1S SENT 10
COMPUTE NODES

204
y -

COMPUTE NODES
PROCESS OBSERVATIONS

—~ 206
N
- BROADCAST LEVEL
YALUE CAPS

| s

FINAL PRUNING

| /810
DATA MERGE
Fig. 12

US 9,239,867 B2

U.S. Patent

TABLE | WORKER! DATA

Jan. 19, 2016

Sheet 11 of 21

US 9,239,867 B2

TABLE 2 WORKER2 DATA

€l

N1

Cl

N1

TR et P | oo T e

LIE O I ~J o0

O e § LD [N § o Frommae

PRAINTO MO WO

U.S. Patent Jan. 19, 2016 Sheet 12 of 21 US 9,239,867 B2

WORKER] OBSERVATIONS WORKER? OBSERVATIONS
Ci_[vAL: 1] NI [vAL: a1.2] [CI [vAL: 1] NI |VAL: 9.8
LEVEL| FREQ [LEVEL| FREQ LEVEL| FREQ [LEVEL| FREQ
1 I lere] 1 L | 1 9.8 1
1
OTHER[0 |OTHER| 0@ OTHER| 0| OTHER] 0

C1 IVAL: 2] NI |JVAL: 65.3 Cl |VAL: 1] NI |[vAL: 30.3

LEVEL | FREQ |LEVEL| FREQ LEVEL | FREQ | LEVEL| FREQ
1 T | 21.2 1] 2 3.8 1
2 2] 65.3] 30.3 1
OTHER| 0 | OTHER 0 OTHER] © | OTHER 0

C1 |VAL: 1] NI [VAL: 17.3 CI_ VvAL: 2] NI IVAL: 72.1
LEVEL | FREQ | LEVEL| FREQ (EVEL | FREQ | LEVEL| FREG
I 2 117.3 1 1 2 5.8 I
3 2 R i 2 1| 30.3]
65.3 1 72.1 1
OTHER| © | OTHER 0 OTHER| O | OTHER 0

Fig. 14A

U.S. Patent Jan. 19, 2016 Sheet 13 of 21
C1 |VAL: 3] NI | VAL: 51 Cl |VAL: 3] NI [VAL: 60.5
LEVEL | FREQ | VALUE| FREQ LEVEL | FREQ | LEVEL] FREQ
z 2 | 17.3] 1 1 2 | 9.8 i
4 2 TRER]) T | 30.3 1
3 1 5] 1 3 I | 60.5]
£5.3 1 2.1 1
OTHER| © |OTHER] O OTHER| 0 | OTRER] 0
CI |VAL: 1] NI |VAL: 29,9 Cl JvAL: 1| NI JVAL: 35.7
LEVEL | FREG | VALUE| FREQ LEVEL | FREQ | LEVEL| FREQ
] 3 | 17.3 1 1 3 | 9.8 z
s [2 R EE z > 1| 30.3 1
3 | 9.9 | 3 [| 35.0]
5] i 60.5 1
OTHER| O | OTHER | OTHER| 0 | OTHER 1
C1 |VAL: 1] NI |VAL: 29.9 Cl [VAL: 1] NI [vAL: 35.2
LEVEL | FREQ | VALUE| FREQ LEVEL | FREQ |LEVEL] FREQ
1 3 | 17.3 1 x 3 | 9.8 1
I TREE I 2 [| 30.3 [
3 1 | 9.9 1 3 || 35.7 1
51 1
OTHER| O | OTHER 1 OTRER| 0 | OTHER| @
€1 VAL: 2] NI |VAL: 38.6 Cl |VAL: 2] NI]VAL: 2.1
LEVEL | FREQ |VALUE| FREQ LEVEL | FREQ | LEVEL| FREQ
1 3 | 17.3 1] 3 | 2.1 1
6 | 2 2 | el.0 | 2 2 | 9.8 1
3 || 29.9 1 3 [| 30.3 1,
38.6 i 35.0 i
OTHER| 0 |OTHER| @ OTHER| 0 | OTHER| @

US 9,239,867 B2

U.S. Patent Jan. 19, 2016 Sheet 14 of 21 US 9,239,867 B2
WORKERT LEVELS WORKER? LEVELS
Ci N1 Cl N1
LEVEL| FREQ |LEVEL| FREQ LEVEL | FREQ | LEVEL| FREQ
1 3 | 17.3 I 1 3 | e.l 1
2 2 | ?l.2] 2 2 | 9.8 1
3 1| 29.9 i 3 || 30.3 1
| 35.0]
OTHER| 0 |OTHER| 3 OTHER] © | OTHER] @2
Fig. 15
Cl Cl
WORKER] LEVELS WORKERZ LEVELS
DATA VALUE FREQUENCY DATA VALUE FREQUENCY
1 3 <] 3
2 2 2 ?
3 l X 3 B
OTHER 0 OTHER 0
Cl
COMBINED LEVELS
DATA VALUE FREQUENCY
1 3
2 4
3 2
OTHER K

Fig. 16

U.S. Patent Jan. 19, 2016 Sheet 15 of 21 US 9,239,867 B2
NI N1
WORKER1 WORKER?
LEVEL | FREQUENCY LEVEL FREQUENCY
17.3 1 2.1 1
21.2 1 h\\\““-~:=,> 9.8 1
29.9 1 30.3 |
35.2 1
OTHER 3 OTHER 2
Fig. 17A
NI NI
WORKER! LEVELS MERGED LEVELS| VAL: 21.2 FREQ:!
DATA VALUE | FREQUENCY LEVEL FREQUENCY
2.1 1
21.2 1 9.8 1
29.9 1 \\\\‘\\\\¢ 17.3 1
30.3 1
OTHER 3 OTHER 3
Fig. 17B
NI NI
WORKER! LEVELS MERGED LEVELS| VAL: 21.2 FRED:]
DATA VALUE | FREQUENCY LEVEL FREQUENCY
2.1 1
9.8 1
29.9 1 17.3 1
el.e 1
OTHER 3 OTHER 4
Fig. 17C

U.S. Patent

Jan. 19, 2016

Sheet 16 of 21

US 9,239,867 B2

N1)
WORKER 1 MERGED LEVELS| VAL: 29.9 FREQ: |
LEVEL FREQUENCY LEVEL FREQUENCY
2.l]
9.8 1
17.3 !
cl.z 1
OTHER 3 E— OTHER 5
Fig. 17D
NI NI
WORKER! MERGED LEVELS|VAL: OTHER FREQ:3
LEVEL FREQUENCY LEVEL FREQUENCY
2.1 [
9.8 l
17.3 I
el.c l
OTHER OTHER 8

Fig. 17E

U.S. Patent

Jan. 19, 2016 Sheet 17 of 21

850
™~

US 9,239,867 B2

‘374\\ /876 870
[KEYBOARD] [MICROPHONE] [::DISP/D-AY
854 =
CPU 6 [INTERFACE DISPLAY
INTERF ACE
asa\
850“\
ISK ROM RAM COMMUNICATION
CONTROLLER PORTS
856 858 _—
864
[Co RoM] | [HARD DRIVE]
N 866

862 ~_] FLOPPY

ORIVE

US 9,239,867 B2

Sheet 18 of 21

Jan. 19, 2016

U.S. Patent

L6l
9|geLIEA 0] 8]01 JByNUSPI Piodal ubissy

3161 2|geueA 0} 9j04 [eAIBUI UDISSY

¢lL6l (SoN|EA B|(ISIA iy

6

3061 2|geLieA o} a0 |eouobaled ubissy

L B4

2261 Ploysaiy Ajlfeuipieo
UBiy 8y} 1o} anjeA paseaioul ue SAI808Y

0281 SonjeA B|GISIA 8ley

161 ¢2dA] 9|qeuen paxi4

0161 ¢9dA1 ajqeuen opawnN

9061 ¢Auleupsed ybiH

7061 2|geLeA 8y} JO} PaLnooo
SBN[BA 3|QISIA BJE1 JBYIBYM SUIULIRIB(g

0061 {(JUNOD MOJLIBAC
‘SIUNOS ‘adA}) Blep o|geleA suluLBsleg

A 4

Z06] PICUSAIU] anjeA sl pue ploysalyl
Ayjeuipieo ybiy e 1oy anjeA e aa1e09y

U.S. Patent Jan. 19, 2016 Sheet 19 of 21 US 9,239,867 B2

2004

2000

IR

BTN

///\\s\\
\

AN
/AN
/LA

1000
900
800
700
600
500
400
300
200
100

U.S. Patent Jan. 19, 2016 Sheet 20 of 21 US 9,239,867 B2

2104

Fig. 21

2102

AN
/NN
//) 1T TN
AAARRRRNNN |

o

(a\}

2500
2000
1500
1000
500
0

U.S. Patent Jan. 19, 2016 Sheet 21 of 21 US 9,239,867 B2

2200

Fig. 22

2202

1010
1000
990
980
970
960
950

US 9,239,867 B2

1
SYSTEM AND METHOD FOR FAST
IDENTIFICATION OF VARIABLE ROLES
DURING INITIAL DATA EXPLORATION

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present application is a continuation-in-part of U.S.
patent application Ser. No. 13/772,404, filedon Feb. 21,2013,
the entire contents of which are hereby incorporated by ref-
erence.

TECHNICAL FIELD

The technology described herein relates generally to com-
puter-implemented systems and methods for data mining, and
in particular, to computer implemented systems and methods
for initial data exploration before the start of data analysis.

BACKGROUND

Data mining can be used in various fields. Data mining may
reveal information and insight into a data set.

SUMMARY

In accordance with the teachings provided herein, systems
and methods are provided for identifying data variable roles
during initial data exploration. In one example, a computer-
implemented method of determining a role for a data variable
for use in data modeling of a physical process is disclosed.
The method comprises identifying to a plurality of data nodes
a set of data records containing data values assigned to each
data node, a maximum number of levels to record in a sorted
data structure at the data nodes, and the data node responsible
for each of a plurality of variables. The method further com-
prises receiving for each variable from the data node respon-
sible for the variable a plurality of unique data values for the
variable, a count for each of the unique data values and an
overflow count for the variable, wherein the number of unique
data values does not exceed the maximum number of levels.
The data values, counts and overflow count having been gen-
erated at a plurality of data nodes by node data processors
configured by data processing instructions to determine
whether a next data value for a data record can be added to the
sorted data structure at the data node and that a count associ-
ated with that next data value can be added to the sorted data
structure when the next data value can be added, determine
whether the next data value is already included in the sorted
data structure and that the count associated with that next data
value can be incremented when the next data value is already
included, and determine whether the next data value should
not be added to the data structure and that an overflow count
at that node should be incremented when the next data value
cannot be added. A role for a variable can be determined
based upon the unique data values, counts and overflow count
for the variable.

In another example, a computer-implemented system for
determining a role for a data variable for use in data modeling
of a physical process is provided. The system comprises a
plurality of data nodes each comprising a node data processor
configured to perform operations on a plurality of data
records. Each data record includes a data value for a variable.
The plurality of data nodes include non-transitory computer-
readable media encoded with a sorted data structure and
encoded with data processing instructions. The sorted data
structure is provided for storing up to a predetermined num-

10

15

20

25

30

35

40

45

50

55

60

65

2

ber ofunique data values for one or more variables, a count for
each of the unique data values, and an overflow count for each
of'the one or more variables. The data processing instructions
comprise instructions for configuring the data node to deter-
mine whether a next data value can be added to the sorted data
structure at the data node and that a count associated with that
next data value can be added to the sorted data structure when
the next data value can be added, determine whether the next
data value is already included in the sorted data structure and
that the count associated with that next data value can be
incremented when the next data value is already included, and
determine whether the next data value should not be added to
the data structure and that an overflow count at that node
should be incremented when the next data value cannot be
added. One of the data nodes is a root data node comprising a
root data processor configured by instructions to communi-
cate data record assignments to the data nodes and a maxi-
mum number of levels to record in the sorted data structure.
The root data processor is also configured to receive for a
plurality of variables a plurality of unique data values, a count
for each of the unique data values and an overflow count for
the variables. A role for a variable can be determined based
upon the unique data values, counts and overflow count for
the variable.

In yet another example, a computer-program product for
performing data mining operations on data is provided. The
computer-program product is tangibly embodied in a
machine-readable non-transitory storage medium and
includes instructions configured to cause a data processing
apparatus to identify to a plurality of node data processors a
set of data records containing data values, wherein a particu-
lar node data processor is assigned a particular set of data
records. At the particular node data processor, the instructions
are configured to cause a data processing apparatus to deter-
mine whether a data value for a next data record in the par-
ticular set of data records can be added to a sorted data
structure at the particular node data processor, wherein the
particular node data processor is configured for each variable
to store up to a predetermined number of unique data values
in the sorted data structure and a count for each of the unique
data values, and wherein the particular node data processor is
configured to store an overflow count of data values that
cannot be added to the sorted data structure. The instructions
are further configured to cause a data processing apparatus to
increment the count associated with that data value when the
data value can be added and the data value matches a data
value in the sorted data structure, add the data value to the
sorted data structure when the data value can be added and the
data value does not match a data value in the sorted data
structure, and increment the overflow count when the data
value cannot be added. The instructions are further config-
ured to cause a data processing apparatus to consolidate the
data values and counts for each variable from the particular
node data processor with data values and counts from other of
the plurality of node data processors into a sorted consoli-
dated data structure. A role for a variable can be determined
based upon the unique data values, counts and overflow count
for a variable.

In another example, a computer-implemented method of
determining a role for a data variable for use in data modeling
of a physical process is provided. The method comprises
receiving the identity of a set of data records containing data
values and a maximum number of levels to record in a sorted
data structure, determining for a data variable whether a next
data value for a data record can be added to the sorted data
structure and that a count associated with that next data value
can be added to the sorted data structure when the next data

US 9,239,867 B2

3

value can be added, determining for the data variable whether
the next data value is already included in the sorted data
structure and that the count associated with that next data
value can be incremented when the next data value is already
included, and determining for the data variable whether the
next data value should not be added to the data structure and
that an overflow count should be incremented when the next
data value cannot be added. The method further comprises
broadcasting for the data variable a plurality of unique data
values, a count for each of the unique data values and an
overflow count, wherein the number of unique data values
does not exceed the maximum number of levels. A role for the
variable can be determined based upon the unique data val-
ues, counts and overflow count.

In yet another example, a computer-implemented method
foridentifying data variable roles is provided. A variable type,
unique data value count values, and an overflow count value
are determined for a variable. The unique data value count
values include a number of occurrences of each of a plurality
of unique data values for the variable in a data set. The
overflow count value is a number of occurrences of data
values other than the plurality of unique data values for the
variable in the data set. Determine that the variable is a high
cardinality variable when a number of the plurality of unique
data values is greater than a value for a high cardinality
threshold, or determine that the variable is not a high cardi-
nality variable when a number of the plurality of unique data
values is less than a value for a high cardinality threshold.
When the variable is determined to not be the high cardinality
variable, a class variable role is assigned to the variable, or,
when the variable is determined to be the high cardinality
variable, whether or not the variable is a numeric variable type
is determined based on the determined variable type. When
the variable is determined to not be the numeric variable type,
the overflow count value is compared to the unique data value
count values to determine whether or not rare visible values
occurred for the variable. When the determination is that rare
visible values occurred for the variable, a record identifier
variable role is assigned to the variable.

In yet another example, a computer-program product is
provided. The computer-program product is tangibly embod-
ied in amachine-readable non-transitory storage medium and
includes instructions configured to perform the computer-
implemented method for identifying data variable roles.

In yet another example, a computer-implemented system is
provided. The system includes a processor and a non-transi-
tory computer-readable medium encoded with data process-
ing instructions comprising instructions for configuring the
processor to perform the computer-implemented method for
identifying data variable roles.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram depicting an example environ-
ment wherein users can interact with a computing environ-
ment that can perform data mining operations.

FIG. 2 is a block diagram depicting an example grid-based
computing environment that can perform data mining opera-
tions.

FIG. 3 is a block diagram depicting an example grid-based
computing environment that can evaluate data value roles.

FIG. 4 is a process flow chart that depicts an example
process performed by a control node data processor to iden-
tify data variable roles.

FIG. 5 is a process flow chart that depicts an example
process performed by a control node data processor to assign
tasks to a plurality of worker node data processors.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 6 is a process flow chart that depicts an example
process performed by worker node data processors.

FIG. 7 is a process flow chart that depicts an example
process performed by a particular worker node processor
when executing its assignment.

FIG. 8 is a process flow chart that depicts an example
process performed by a particular worker node processor to
process its assigned observations.

FIG. 9 is a process flow chart that depicts an example
process performed by a particular worker node data processor
to update level caps and prune trees to create trees with the
minimum n levels.

FIG. 10 is a process flow chart that depicts an example
process performed by a particular worker node data processor
to update level caps and prune trees to create trees with the
maximum n levels.

FIG. 11 is a process flow chart that depicts an example
process performed by worker node data processors when
merging data from other worker node data processors.

FIG. 12 is a process flow chart that depicts an example
process for identifying data variable rules during initial data
exploration.

FIG. 13 contains two example tables that, respectively,
show the observations that are assigned to example compute
node 1 and example compute node 2 for a data table with two
variables, C1 and N1.

FIGS. 14a and 145 contain a collection of example tables
that show the state of observed levels recorded in the binary
trees after each observation is processed.

FIG. 15 contains two example tables that, respectively,
show the final level lists for the two example worker nodes
after all of the example observations have been processed.

FIG. 16 contains a collection of tables that illustrate the
merging of the values for variable C1.

FIGS. 17A-17E contains a collection of tables that illus-
trate the merging of the values for variable N1. In particular,
FIG. 17A illustrates the merger of level 17.3 from Worker 1
with the Worker 2 table. FIG. 17B illustrates the merger of
level 21.2 from Worker 1 with the Worker 2 table. FIG. 17C
illustrates the merger of level 29.2 from Worker 1 with the
Worker 2 table. FIG. 17D illustrates the merger of the Other
data from Worker 1 with the Other data in the Worker 2 table.
And, the final tables in FIG. 17E illustrate the final result after
the data merge is complete.

FIG. 18 is a block diagram of example hardware for either
standalone or client/server computer architecture.

FIG. 19 is another process flow chart that depicts an
example process for identifying data variable rules during
initial data exploration.

FIG. 20 is a histogram illustrating a variable for which rare
visible values did not occur.

FIG. 21 is a histogram illustrating a variable for which rare
visible values did occur.

FIG. 22 is a second histogram illustrating a variable for
which rare visible values did not occur.

DETAILED DESCRIPTION

FIG. 1 depicts at 10 a computing environment for process-
ing data for many different types of applications, such as for
scientific, technical or business applications. One or more
user computers 12 can interact with the computing environ-
ment 10 through a number of ways, including a network 14.
The computing environment 10 illustrated is a grid-based
computing environment that includes multiple compute
nodes, each containing one or more servers or data processors
(not shown). However, a grid-based computing environment

US 9,239,867 B2

5

may not be required. One or more data stores 16 may be
coupled to the computing environment 10 to store data to be
processed in the computing environment 10 as well as to store
any intermediate or final data generated by the computing
environment. Computer-readable memory 18 may also be
coupled to the computing environment 10 for use by the data
processors when processing data. An example application for
the computing environment 10 involves the performance of
data mining, in general, and initial data exploration before the
start of data analysis, in particular.

FIG. 2 illustrates hardware components for an example
grid-based computing system 10, which is the computing
environment 10 in FIG. 1. The grid-based computing system
10 includes a number of data processing nodes 20, 22 com-
prising multi-core data processors 21, 24 in this example. One
of the nodes is designated a control or root data processing
node 20 and a plurality of the nodes are designated as worker
data processing nodes 22. Each data processing node 20, 22
may include computer-readable memory 26 that is accessible
to the data processor associated with that node.

The various data processing nodes 20, 22 are connected via
a network 28 and can communicate with each other using a
predetermined communication protocol such as the Message
Passing Interface (MPI). The root data processor 21 at the
control node 20 can communicate with a client application 29
over a communication path 30 to receive ad hoc queries from
auser and to respond to those ad hoc queries after processing
data.

FIG. 3 depicts an example grid-based computing system
that is configured to execute a method for fast identification of
data variable roles during initial data exploration. This
example system includes a root data processor 31 and a plu-
rality of worker node data processors 32, 33, wherein one of
the worker node data processors is designated as a particular
worker node data processor 33 for illustrative purposes. The
root data processor 31 is operative to receive data records 34
of a data set on which fast identification of data variable roles
will be performed during an initial data exploration operation.
The root data processor 31 can communicate bi-directionally
with each of the worker node data processors 32, 33, and each
of the worker node data processors 32, 33 can communicate
bi-directionally with the other worker node data processors
32, 33. Alternatively (or in addition), the worker node data
processors 32, 33 may have data records 45 of a portion of the
data set pre-distributed to the node instead of all data records
34 of the complete data set being initially stored at the root
data processor node.

Also, depicted are computer-readable memory 35 coupled
to the root data processor 31 and computer-readable memory
36 coupled to the particular node data processor 33. In some
implementations, the computer-readable memory 36
includes a sorted data structure 38 for capturing unique data
values and unique data value counts for variables analyzed by
the particular node data processor. The computer-readable
memory 36 also captures an overflow count 40 for variables
analyzed by the particular node data processor. The com-
puter-readable memory 36 and its contents are illustrative of
computer-readable memory (not shown) that is coupled to the
other node data processors 32.

The computer-readable memory 35 coupled to the root
data processor 31 includes a consolidated data structure 42
for combining and recording consolidated data values and
counts received from the sorted data structures 38 from the
various node data processors 32, 33. The computer-readable
memory 35 also captures a consolidated overflow count 44 by
combining and consolidating unique overflow counts 40
received from the various node data processors 32, 33.

10

15

20

25

30

35

40

45

50

55

60

65

6

FIG. 4 depicts an example process performed by a control
node data processor of one or more of the systems of FIGS.
1-3 for identifying data variable roles during initial data
exploration. At operation 100, a request is received from a
client application or user. The request 102 in this example
includes the identity of the data set to be explored, the maxi-
mum number of levels allowed for each variable explored,
and the identity of the variables to be explored.

At operation 104, the control node assigns tasks to one or
more worker nodes. The task assignments in this example
may be broadcast to all worker nodes. The task assignments
include assigning each variable a specific worker node for
consolidation of level information. The consolidation infor-
mation for all variables is eventually sent to the control node.
Every worker node is sent the tasking for all worker nodes.
The specific assignment 106 for each worker node may
include the identity of the data set, the maximum number of
levels allowed for each variable explored, the identity of the
variables to be explored, a specific variable assigned to a
particular worker node, and the portion of the data set
assigned to a particular worker node if the data has not been
pre-distributed in 45 of FIG. 3.

At operation 108, the control node receives the results of
the analysis performed by the worker nodes. The results 110
may include the data values and counts for variables in the
data set. In this example, since certain worker nodes are
assigned specific variables, the control node may receive
from certain worker nodes the values and total counts for their
assigned variables. The control node in this case would con-
solidate all task results from the various reporting worker
nodes.

At operation 112, the control node may report the consoli-
dated results to the client application or user. The consoli-
dated results 114 may include the data values and counts for
the variables specified by the client application or user in the
request 102.

FIG. 5 depicts an example process performed by a control
node data processor to assign tasks to a plurality of worker
node data processors. At operation 116, the control node
broadcasts the task assignments to all worker nodes. The
assignment for each worker node may include the identity of
the data set, the maximum number of levels (n) allowed for
each variable explored, the identity of the variables to be
explored, a specific variable assigned to a particular worker
node, the portion of the data set assigned to a particular
worker node, and a batch size (b) identifying the number of
observations for a worker node to process before reporting its
progress to other worker nodes. After the broadcast, the
worker nodes may proceed with processing their portions of
the data set (operation 118).

FIG. 6 depicts an example process performed by worker
node data processors. At operation 120, the worker node
processors receive the broadcast information. The broadcast
information 122 may include the identity of the data set, the
maximum number of levels (n) allowed for each variable
explored, the identity of the variables to be explored, a spe-
cific variable assigned to a particular worker node, the portion
of the data set assigned to a particular worker node, and a
batch size (b) identifying the number of observations for a
worker node to process before reporting its progress to other
worker nodes.

At operation 124, each worker node processor begins
executing its assignment. Assignment execution may involve
retrieving its assigned portion of the data set, which contains
observations to be processed, and processing a first batch of
observations (operation 126). Processing observations may
involve generating and updating a binary tree for each

US 9,239,867 B2

7

encountered variable, wherein the binary tree can have no
more than the maximum number of levels (n). After a batch
size (b) of observations has been processed, each worker node
processor broadcasts information regarding its binary trees to
allow the collective group of worker node processors to
update level caps and prune their binary trees (operation 128).
After tree pruning, each worker node processor processes
another batch size (b) of observations (operation 126) fol-
lowed by additional level cap updates and binary tree pruning
(operation 128). This cycle repeats until all of the observa-
tions are processed. After all of the observations are pro-
cessed, the worker node processors begin to merge their data
(operation 130). After the data merge, the worker node pro-
cessors report the results relating to their assigned variables to
the control node processor (operation 132). The results 134
may include the data values and counts for the variables
specified by the client application or user in the request that
initiated the analysis.

FIG. 7 depicts an example process performed by a particu-
lar worker node processor when executing its assignment. At
operation 136, a particular worker node processor processes a
first batch of observations. Processing observations may
involve generating and updating a binary tree for each
encountered variable, wherein the binary tree can have no
more than the maximum number of levels (n). After a batch
size (b) of observations has been processed, the worker node
processor begins the process of updating the level caps for its
binary trees and pruning the binary trees (operation 138).
During this operation, the worker node processor broadcasts
information regarding its binary trees. In particular, the
worker node processor broadcasts for each variable the value
of'the nth level in the variable’s binary tree to the other worker
node processors (operation 140). The particular worker node
processor at operation 140 also listens for the nth level of
corresponding binary trees prepared by the other worker node
processors. After receiving the nth level of corresponding
binary trees, the particular worker node processor adjusts its
binary trees (operation 142) by setting its cap level to the most
restrictive of the nth levels received from the other worker
node processors and prunes its binary trees.

After tree pruning, the particular worker node processor
determines if there are more observations to be processed
(operation 144) and processes another batch size (b) of obser-
vations (operation 136) if more observations are available for
processing. If no more observations are available for process-
ing, the particular worker node processor begins the process
of updating the level caps for its binary trees and pruning the
binary trees (operation 146) one last time. During this opera-
tion, the worker node processor broadcasts for each of its
variables the value of the nth level in the variable’s binary tree
to the other worker node processors (operation 148) and
listens for the nth level of corresponding binary trees prepared
by the other worker node processors. After receiving the nth
level of corresponding binary trees, the particular worker
node processor adjusts its binary trees (operation 150) by
setting its cap level to the most restrictive of the nth level
received from the other worker node processors and prunes its
binary trees. After tree pruning, the particular worker node
processor begins the data merge process (operation 152).

FIG. 8 depicts an example process performed by a particu-
lar worker node data processor to process its assigned obser-
vations. Each worker node passes through its data creating
binary trees of the top n values of each variable. With each
new observation, each binary tree is updated. At operation
154, the particular worker node data processor determines if
the observation value for a variable is greater than a level cap
in the binary tree for that variable. If the value is greater than

20

30

40

45

8

the cap, then an “other count” counter is incremented (opera-
tion 156) and the processing of that observation is completed.
If the value is not greater than the cap, then the particular
worker node data processor determines if the observation
value has already been seen (operation 158). If the level has
already been seen, then a frequency counter for that level is
incremented (operation 160) and the processing of that obser-
vation is completed. If the level has not already been seen,
then the particular worker node data processor determines if
the binary tree already has n levels (operation 162). If the
binary tree does not have n levels, then a level equal to the
value ofthe observation is inserted into the binary tree (opera-
tion 164), a frequency count for the level is established, and
the processing of that observation is completed. If the binary
tree does have n levels, then a level equal to the value of the
observation is inserted into the binary tree, the largest level is
pruned (or deleted) from the binary tree, the other count
counter is incremented by the number in the frequency
counter for the pruned level, the level cap is updated to be
equal to the value of the largest level (operation 166), and a
frequency count for the level is established. The processing of
that observation is then completed. After an observation is
processed, then the next observation is processed until the
batch (b) number of observations has been processed or the
last observation has been processed, whichever occurs first.

FIG. 9 depicts an example process performed by a particu-
lar worker node data processor to update level caps and prune
trees after a batch (b) number of observations has been pro-
cessed or the last observation has been processed. Periodi-
cally, every worker node will broadcast to every other worker
node the value cap in each of their trees if the trees are of size
n. If the trees are of a size strictly less than n, then a special
value indicating that no value cap is available for this particu-
lar worker node is broadcast. The most restrictive of these
value caps is a bound on the value of the nth distinct value. All
tree nodes violating this value bound are pruned from every
tree. Local memory usage may be reduced as a result of
pruning. At operation 170, the particular worker node data
processor broadcast to other worker nodes the maximum
value in each tree if tree has size n. At operation 172, the
particular worker node data processor receives broadcasts
from other worker nodes containing the maximum value in
their trees. Although this example shows operation 170 occur-
ring before operation 172, this is not required. In appropriate
situations, operation 172 may occur at the same time as or
prior to operation 170. At operation 174, the particular worker
node data processor determines for each tree at the node if the
minimum broadcasted value for the tree is less than the level
cap for the tree, then prunes the largest value from the tree,
inserts the minimum broadcasted value in the tree, and sets
the level cap to the minimum broadcasted value.

FIG. 10 depicts an example process performed by a par-
ticular worker node data processor to update level caps and
prune trees after a batch (b) number of observations has been
processed or the last observation has been processed. The
process depicted in FIG. 10 is similar to that of FIG. 9 except
that instead of creating trees with the minimum n levels the
process creates trees with the maximum n levels. Periodically,
every worker node will broadcast to every other worker node
the value cap in each of their trees if the trees are of size n. If
the trees are of a size strictly less than n, then a special value
indicating that no value cap is available for this particular
worker node is broadcast. The most restrictive of these value
caps is a bound on the value of the nth distinct value. All tree
nodes violating this value bound are pruned from every tree.
Local memory usage may be reduced as a result of pruning. At
operation 171, the particular worker node data processor

US 9,239,867 B2

9

broadcast to other worker nodes the minimum value in each
tree if tree has size n. At operation 173, the particular worker
node data processor receives broadcasts from other worker
nodes containing the minimum value in their trees. Although
this example shows operation 171 occurring before operation
173, this is not required. In appropriate situations, operation
173 may occur at the same time as or prior to operation 171.
At operation 175, the particular worker node data processor
determines for each tree at the node if the maximum broad-
casted value for the tree is greater than the level cap for the
tree, then prunes the smallest value from the tree, inserts the
maximum broadcasted value in the tree, and sets the level cap
to the maximum broadcasted value.

Depicted in FIG. 11 is a flow chart illustrating an example
process performed by worker node data processors when
merging data from other worker node data processors relating
to an assigned variable. At operation 176, a particular worker
node processor receives for its assigned variable a level value
and a frequency count for that level from another worker node
processor. At operation 178, the particular worker node pro-
cessor processes that level as ifit was an observation and adds
the frequency count to the appropriate counter. After the level
is processed, an additional level is processed if it exists (op-
eration 180).

In particular, to process a level a particular worker node
processor determines if the observation level has a value that
is greater than a level cap in the binary tree for that variable.
If the value is greater than the cap, then the “other count”
counter is incremented by the amount of the frequency count
for the level. If the value is not greater than the cap, then the
particular worker node data processor determines if the level
value is already in the binary tree. If the level value is already
in the binary tree, then the frequency count for that level in the
binary tree is incremented by the amount of the frequency
count for the received level. Ifthe level value is not already in
the binary tree, then the particular worker node data processor
determines if the binary tree already has n levels. If the binary
tree does not have n levels, then a level equal to the value of
the received level is inserted into the binary tree and a fre-
quency count for the level is set to the frequency count for the
received level. If the binary tree does have n levels, then a
level equal to the value of the received level is inserted into the
binary tree, the largest level is pruned (or deleted) from the
binary tree, the other count counter is incremented by the
number in the frequency counter for the pruned level, fre-
quency count for the new level is set to the frequency count for
the received level, and the level cap is updated to be equal to
the value of the largest level, a frequency count for the level is
established.

FIG. 12 depicts another example method for identifying
data variable roles during initial data exploration. This
method is appropriate for either a grid-based computing envi-
ronment or a standalone computing environment. In this
example a computing system having a control node and two
compute nodes are used. The control node and compute nodes
may be in either a grid-based computing environment or a
standalone computing environment. At operation 200 the
control node receives a request from a user specifying the data
set, the variables (C1 and N1 in the examples in FIGS. 13-17)
and a threshold for the number of levels returned (4 in the
examples in FIGS. 13-17).

At operation 202, the problem description is sent to the
compute nodes. The control node sends the complete problem
description to each of the two compute nodes. This includes
operational information such as the number of records to
process before broadcasting the 4” largest observed level and

10

15

20

25

30

35

40

45

50

55

60

65

10

information regarding which compute node is assigned to
perform the final aggregation of levels for each variable.

Depicted in FIG. 13 are two tables that, respectively, show
the observations that are assigned to compute node 1 and
compute node 2. Each table contains observation values for
the two variables, C1 and N1.

Referring again to FIG. 12, at operation 204, the compute
nodes process observations. Each compute node processes its
assigned observations and creates a local tree of the top 4
levels for each variable. Local binary trees are used to keep an
ordered copy of the top 4 levels. A description of an example
type of binary tree that may be used can be found at Donald
Knuth. The Art of Computer Programming, Volume 3, Sec-
ond Edition. Addison-Wesley, 1998. Pages 426-454, although
many other binary tree implementations may be used. The
compute nodes process observations in parallel and each
variable is processed in a single pass.

The collection of tables at FIGS. 14a and 145 show the
state of observed levels recorded in the binary trees after each
observation is processed. Changes from the previous state are
indicated in bold type. Each of observations 1-4 are recorded
in the binary trees and are shown in the tables of FIGS. 14a
and 144. Itis not until observation 5 for each compute node is
processed that levels are pruned from the binary trees.

The fifth observation is the first instance where there are
more than 4 observed levels of Variable N1. At Workerl, the
addition of the 29.9 level causes the largest level, 65.3, to be
removed from the list and its frequency added to the “Other”
level. On Worker2, the 60.5 level causes the 72.1 level to be
removed from the list and its frequency added to the “Other”
level.

After processing the fifth observation, an intermediate
pruning of the variable N1 occurs. Each compute node broad-
casts its current 4% level (Workerl sends 51, Worker2 sends
60.5). The value 60.5 is removed from Worker2 (since
60.5>51) and its frequency is added to the “Other” level. The
stored levels after this pruning operation are shown in row SP.
Notably, the list for Variable N1 on Worker2 has only 3 levels.
When a new level is observed, it will only be added to the list
if it is less than or equal to the value used during the last
pruning phase, 51. The intermediate pruning done in this
operation is optional.

During processing of the sixth observation at Workerl,
another pruning of the variable N1 occurs. The value of 51 is
removed and its frequency is added to “Other”. N1=38.6 is
the last value in its tree. During processing of the sixth obser-
vation at Worker2, the level 2.1 is added and no pruning is
necessary. Shown in the final two tables of FIG. 144, are the
states of the binary trees after all six observations have been
processed at both compute nodes.

No pruning was needed for the variable C1 on either com-
pute node since the cardinality of C1 was not greater than 4.
Also, during the processing of the observations, pruning of
any variable can take place as soon as the cardinality of the
variable processed at any node reaches the maximum level set
by the user.

Referring again to FIG. 12, at operation 206, the compute
nodes broadcast maximum level values. After all observa-
tions are processed, each compute node broadcasts its 4th
level of each variable one last time (or a special value indi-
cating there is no 4th level).

Atoperation 208, final pruning is done. Once the broadcast
of largest level values occurs final pruning can begin. For
Variable C1, none of the worker node has attained the preset
maximum number of level so no pruning occurs for Variable
C1 levels. For Variable N1, Workerl broadcasts 38.6 and
Worker?2 broadcasts 35.2. Since the Worker2 maximum level

US 9,239,867 B2

11

is lower, the Worker 1 level list is pruned. The final level lists
for both worker nodes are shown in FIG. 15.

At operation 210, data merge takes place. The values for
Variable C1 are merged on Workerl. In this case C1 has the
same levels on both nodes. An upper bound of 6 on the
cardinality after the merge of C1 is possible depending on the
levels on each node. Since the two worker nodes contain the
same levels, the cardinality of C1 (3) after the 3 merges will
remain the same. Only the frequency values will be updated.
Arrows in FIG. 16 indicate how levels on one compute node
are merged with the other compute node.

Merging of the values for N1 is illustrated in FIGS. 17A-
17E. Inthis example, merging involves adding the nodes from
the tree on Worker 1 to the nodes of the tree that exists on
Worker2. In particular, FIG. 17A illustrates the merger of
level 17.3 from Worker 1 with the Worker 2 table. FIG. 17B
illustrates the merger of level 21.2 from Worker 1 with the
Worker 2 table. FIG. 17C illustrates the merger of level 29.2
from Worker 1 with the Worker 2 table. FIG. 17D illustrates
the merger of the Other data from Worker 1 with the Other
data in the Worker 2 table. And, the final tables in FIG. 17E
illustrate the final result after the data merge is complete. The
final tables resulting from the data merge can either be written
to a distributed data set or sent to the control node and then
output to a client.

In the examples of FIGS. 8-9 and 13-17, the level having
the largest value is pruned when tree pruning is performed.
Any ofthese examples, however, could alternatively be modi-
fied so that the level having the smallest value is pruned
instead as illustrated in FIG. 10.

The operations depicted in FIGS. 4-17 may be imple-
mented by one or more processors executing programming
instructions. The programming instructions may be stored in
data stores and/or computer-readable memory.

The foregoing examples illustrate systems having separate
control and worker nodes. Separate control and worker nodes,
however, are not required. A control node may also function
as a worker node.

Referring back to FIGS. 1 and 2, depicted are examples of
systems that may be used to identify data variable roles during
initial data exploration. FIG. 1, in particular, depicts an
example client/server environment, and FIG. 2 depicts a sys-
tem that can be used in either a standalone environment or a
client/server environment.

FIGS. 1 and 2 also depict example grid-based computing
systems that may be used to identify data variable roles during
initial data exploration, but a grid-based computing system is
notrequired. The control node could also function as a worker
node in a system containing only a single worker node. In that
case, the system may comprise a single computer.

FIG. 18 shows a block diagram of example hardware for
either standalone or client/server computer architecture 850,
such as the architecture depicted in FIGS. 1 and 2 that may be
used to contain and/or implement the program instructions of
system embodiments of the present disclosure. A bus 852
may connect the other illustrated components of the hard-
ware. A processing system 854 labeled CPU (central process-
ing unit) (e.g., one or more computer processors), may per-
form calculations and logic operations required to execute a
program. A processor-readable storage medium, such as read
only memory (ROM) 856 and random access memory
(RAM) 858, may be in communication with the processing
system 854 and may contain one or more programming
instructions for performing an index join operation. Option-
ally, program instructions may be stored on a computer read-
able storage medium such as a magnetic disk, optical disk,
recordable memory device, flash memory, or other physical

10

20

25

30

35

40

45

50

55

60

65

12

storage medium. Computer instructions may also be commu-
nicated to other systems, components or devices.

A disk controller 860 interfaces one or more optional disk
drives to the system bus 852. These disk drives may be exter-
nal or internal floppy disk drives such as 862, external or
internal CD-ROM, CD-R, CD-RW or DVD drives such as
864, or external or internal hard drives 866. As indicated
previously, these various disk drives and disk controllers are
optional devices.

Each of the element managers, real-time data buffer, con-
veyors, file input processor, database index shared access
memory loader, reference data buffer and data managers may
include a software application stored in one or more of the
disk drives connected to the disk controller 860, the ROM 856
and/or the RAM 858. Preferably, the processing system 854
may access each component as required.

A display interface 868 may permit information from the
bus 852 to be displayed on a display 870 in audio, graphic, or
alphanumeric format. Communication with external devices
may optionally occur using various communication ports
872.

In addition to the standard computer-type components, the
hardware may also include data input devices, such as a
keyboard 874, or other input device 876, such as a micro-
phone, remote control, pointer, mouse and/or joystick.

In some implementations, before performing analyticson a
possibly large and distributed data set a determination can be
made regarding the variables that can potentially be used as
class variables or as numeric (interval) variables. Some vari-
ables may be suitable for inclusion in the analysis even if may
they contain many distinct levels. In addition, getting accu-
rate frequency counts for a subset of levels can provide addi-
tional insight into the data set.

FIG. 19 depicts an example method for identifying data
variable roles during initial data exploration. This method is
appropriate for either a grid-based computing environment or
a standalone computing environment. The operations
depicted in FIG. 19 may be implemented by one or more
processors executing programming instructions. Additional,
fewer, or different operations may be performed depending
on the embodiment. The order of presentation of the opera-
tions of FIGS. 4-12 and 19 are not intended to be limiting.
Although some of the operational flows are presented in
sequence, the various operations may be performed in various
repetitions, concurrently (in parallel, for example, using
threads), and/or in other orders than those that are illustrated.

At operation 1900, variable data is determined. For
example, a variable type, the unique data values and associ-
ated unique data value counts, and the overflow count are read
from a processor-readable storage medium for a variable such
as variable C1 or variable N1 in the examples in FIGS. 13-17.
A variable type may include numeric or character. A numeric
variable type may be further divisible between a fixed vari-
able type and a non-fixed variable type. For example, a fixed
variable type may be any integer type or any floating point
number type for which each value is a floor or a ceiling value.

For example, Table I below shows a variable “Job” with a
threshold for the number of levels returned of five:

TABLE I
Unique data Summed Rarity Unique data
Counter value count value count value value
1 439 439 0.223296 Retail Sales
2 46 485 0.246694 Sales
3 114 599 0.30468 Mechanic

US 9,239,867 B2

TABLE I-continued
Unique data Summed Rarity Unique data
Counter value count value count value value
4 42 641 0.326043 Agri-business
5 11 652 0.331638 Other
Overflow 1314 1966 1

As another example, Table 11 below shows a variable “Job”

with a threshold for the number of levels returned of ten:
TABLE II
Unique data Summed Rarity Unique data
Counter value count value count value value
1 439 439 0.223296 Retail Sales
2 46 485 0.246694 Sales
3 114 599 0.30468 Mechanic
4 42 641 0.326043 Agri-business
5 11 652 0.331638 Other
6 766 1418 0.721261 Manufacturing
7 25 1443 0.733978 Local
Government
8 29 1472 0.748728 Health Care
9 1 1473 0.749237 Wholesale
Marketing
10 7 1480 0.752798 Finance
Overflow 486 1966 1

At operation 1902, a value for a high cardinality threshold
and a value for a rare value threshold are received, for
example, from a user or from a processor-readable storage
medium. The value for the high cardinality threshold may be
less than or equal to the maximum number of levels (n)
allowed for each variable explored. The value for the rare
value threshold may be a small number that may be defined as
apercentage. For example, the value for the rare value thresh-
old may be 0.01%, 0.05%, 0.1%, 1%, etc.

When the value for the high cardinality threshold is less
than the threshold for the number of levels returned, the levels
greater than the high cardinality threshold can be collapsed
into the overflow count.

At operation 1904, whether or not the unique data values
and associated unique data value counts and the overflow
count indicate rare visible values for the variable is deter-
mined. A rarity value is computed as a sum of the unique data
value counts divided by the overflow count. The rarity value
is compared to the value for the rare value threshold. If the
rarity value is less than the value for the rarity value threshold,
rare visible values occurred for the variable.

For example, FIG. 20 depicts a first histogram 2000 for
which the threshold for the number of levels returned was 10.
Unique data value count values 2002 are shown for each
respective level. A first overflow count value 2004 shows the
overflow count. First histogram 2000 illustrates a variable for
which rare visible values did not occur for the variable. First
overflow count value 2004 is smaller than half of the unique
data value count values 2002.

As another example, FIG. 21 depicts a second histogram
2100 for which the threshold for the number of levels returned
was 10. Unique data value count values 2102 are shown for
each respective level though the values are not readily visible
with the y-scale used to present second histogram 2100. The
y-scale is selected to show a second overflow count value
2104, which shows the overflow count. Second histogram
2100 illustrates a variable for which rare visible values did
occur for the variable. Second overflow count value 2104 is
much larger than all of the unique data value count values
2102.

5

10

15

20

25

30

35

40

55

60

65

14

As yet another example, FIG. 22 depicts a third histogram
2200 for which the threshold for the number of levels returned
was 10. Unique data value count values 2202 are shown for
each respective level though third histogram 2200 only
includes two bars because only two values of the variable
were identified in the data exploration. Third histogram 2200
illustrates a variable for which rare visible values did not
occur for the variable. The overflow count is zero indicating
that all of the values of the variable are captured in third
histogram 2200.

At operation 1906, a determination is made concerning
whether or not the variable has a high cardinality. When the
variable has a high cardinality, processing continues at opera-
tion 1910. When the variable does not have a high cardinality,
processing continues at operation 1908. For example, low
cardinality may be determined when a number of the unique
data values is less than or equal to the value for the high
cardinality threshold. Low cardinality also may be deter-
mined when a value of the overflow count is zero.

At operation 1908, a class or categorical role is assigned to
the variable.

At operation 1910, a determination is made concerning
whether or not the variable has a numeric variable type. When
the variable has a numeric variable type, processing continues
atoperation 1916. When the variable does not have a numeric
variable type, processing continues at operation 1912. For
example, a non-numeric variable type may be determined
when the variable is a character variable.

At operation 1912, a determination is made concerning
whether or not rare visible values occurred for the variable as
determined in operation 1904. When rare visible values
occurred for the variable, processing continues at operation
1914. When rare visible values did not occur for the variable,
processing continues at operation 1922.

At operation 1914, an index or a record identifier role is
assigned to the variable.

At operation 1916, a determination is made concerning
whether or not the variable has a fixed variable type. When the
variable has a fixed variable type, processing continues at
operation 1918. When the variable does not have a fixed
variable type, processing continues at operation 1920.

At operation 1918, an interval role is assigned to the vari-
able.

At operation 1920, a determination is made concerning
whether or not rare visible values occurred for the variable as
determined in operation 1904. When rare visible values
occurred for the variable, processing continues at operation
1914. When rare visible values did not occur for the variable,
processing continues at operation 1922.

At operation 1922, an increased value for the high cardi-
nality threshold is received, for example, from a user. Pro-
cessing continues in operation 1904 to repeat the processing
of the variable with the increased value when the increased
value is less than or equal to the threshold for the number of
levels returned. For example, if the number of levels returned
was ten and the increased value for the high cardinality
threshold is less than or equal to ten, processing of the data is
repeated with the increased value by revaluating the distribu-
tion of the unique data value counts and the overflow count.
When the increased value is greater than the threshold for the
number of levels returned, processing of the data set is
repeated to break down the overflow count into new levels
before processing continues in operation 1904. For example,
if the number of levels returned was five and the increased
value for the high cardinality threshold is greater than five,
processing of the data as described above to generate new
consolidated results 114 that split out the overflow count into

US 9,239,867 B2

15

the additional levels is performed. For example, Table II is
created. The user may choose not to increase the value for the
high cardinality threshold in which case the variable is
assigned an “unknown” role.

An example categorical/class variable is an occupation, a
car model, a political affiliation, a religious affiliation, a
patient group identified, etc. Interval variables are typically
numerical measures of various quantities such as a weight, a
temperature, a net worth, etc. An example record identifier
variable is a social security number, or a full name of an entity,
an employee number, a customer identifier, etc.

A variable role determination affects many applications
that can use knowledge of a variable role prior to running the
application to improve the application performance in terms
of accuracy and/or in terms of speed of execution and/or
amount of memory used. For example, the following types of
applications treat variables having different determined vari-
able roles differently:

Regression, classification trees, and many other analytical
methods process categorical role variables differently from
interval role variables.

In statistical graphing of data, the many types of graphs
available for presenting data are sometimes not informative
for specific types of variables. For example, pie charts and
histograms are informative only for variables with low cardi-
nality such as categorical role variables while line graphs are
more convenient for high cardinality numeric variables such
as interval role variables. High cardinality character variables
such as those assigned a record identifier role may be most
informative when using a heat map type graph.

In statistical surveys, stratified sampling is a common tech-
nique where the cardinality of the variable affects the sam-
pling algorithm and, of course, the results. Variables with role
categorical are essential to extracting stratified samples.
Stratified sampling cannot be applied to a data set when all
variables have roles of an interval or a record identifier.

Reconstruction of primary keys or creating secondary keys
in databases. Variables with a role of record identifier are the
prime candidates for keys.

The patentable scope of the described subject matter may
include other examples. Additionally, the methods and sys-
tems described herein may be implemented on many different
types of processing devices by program code comprising
program instructions that are executable by the device pro-
cessing subsystem. The software program instructions may
include source code, object code, machine code, or any other
stored data that is operable to cause a processing system to
perform the methods and operations described herein. Other
implementations may also be used, however, such as firm-
ware or even appropriately designed hardware configured to
carry out the methods and systems described herein.

The systems’ and methods’ data (e.g., associations, map-
pings, data input, data output, intermediate data results, final
data results, etc.) may be stored and implemented in one or
more different types of computer-implemented data stores,
such as different types of storage devices and programming
constructs (e.g., RAM, ROM, Flash memory, flat files, data-
bases, programming data structures, programming variables,
IF-THEN (or similar type) statement constructs, etc.). It is
noted that data structures describe formats for use in organiz-
ing and storing data in databases, programs, memory, or other
computer-readable media for use by a computer program.

The computer components, software modules, functions,
data stores and data structures described herein may be con-
nected directly or indirectly to each other in order to allow the
flow of data needed for their operations. It is also noted that a
module or processor includes but is not limited to a unit of

30

40

45

50

16

code that performs a software operation, and can be imple-
mented for example as a subroutine unit of code, or as a
software function unit of code, or as an object (as in an
object-oriented paradigm), or as an applet, or in a computer
script language, or as another type of computer code. The
software components and/or functionality may be located on
a single computer or distributed across multiple computers
depending upon the situation at hand.

It should be understood that the meaning of “in” includes
“in” and “on” unless the context clearly dictates otherwise.
Finally, as used in the description herein and throughout the
claims that follow, the meanings of “and” and “or” include
both the conjunctive and disjunctive and may be used inter-
changeably unless the context expressly dictates otherwise;
the phrase “exclusive or” may be used to indicate situation
where only the disjunctive meaning may apply.

It is claimed:
1. A method for determining a variable role, the method
comprising:
determining, by a processor, a variable type, unique data
value count values, and an overflow count value for a
variable, wherein the unique data value count values
include a number of occurrences of each of a plurality of
unique data values for the variable in a data set, wherein
the overflow count value is a number of occurrences of
data values other than the plurality of unique data values
for the variable in the data set;
determining, by the processor, that the variable is a high
cardinality variable when a number of the plurality of
unique data values is greater than a value for a high
cardinality threshold, or determining, by the processor,
that the variable is not a high cardinality variable when a
number of the plurality of unique data values is less than
a value for a high cardinality threshold;

when the variable is determined to not be the high cardi-
nality variable, assigning, by the processor, a class vari-
able role to the variable, or, when the variable is deter-
mined to be the high cardinality variable, determining,
by the processor, whether or not the variable is a numeric
variable type based on the determined variable type;

when the variable is determined to not be the numeric
variable type, comparing, by the processor, the overtlow
count value to the unique data value count values to
determine whether or not rare visible values occurred for
the variable; and

when the determination is that rare visible values occurred

for the variable, assigning, by the processor, a record
identifier variable role to the variable.

2. The method of claim 1, wherein comparing the overflow
count value to the unique data value count values comprises:

computing a rarity value as a sum of the unique data value

count values divided by the overflow count value; and
comparing the computed rarity value to a value of a rare
value threshold,

wherein the computed rarity value less than the rare value

threshold results in a determination that rare visible val-
ues occurred for the variable.

3. The method of claim 1, wherein, when the variable type
is a character variable type, the variable is determined to not
be the numeric variable type.

4. The method of claim 1, further comprising, when the
variable is determined to not be the numeric variable type and
the determination is that rare visible values did not occur for
the variable:

receiving, by the processor, a new value for the high car-

dinality threshold;

US 9,239,867 B2

17

determining, by the processor, that the variable is the high
cardinality variable when the number of the plurality of
unique data values is greater than the new value for the
high cardinality threshold; and

when the variable is not determined to be the high cardi-

nality variable, assigning, by the processor, the class
variable role to the variable.
5. The method of claim 1, further comprising, when the
variable is determined to be the high cardinality variable and
to be the numeric variable type:
determining, by the processor, whether or not the variable
is a fixed variable type based on the variable type; and

when the variable is determined to not be the fixed variable
type, assigning, by the processor, an interval variable
role to the variable.

6. The method of claim 5, wherein determining whether or
not the variable is the fixed variable type is further based on
data values of the variable relative to a floor value or a ceiling
value of the variable type.

7. The method of claim 5, wherein the variable is deter-
mined to be the fixed variable type when the variable type is
an integer.

8. The method of claim 5, further comprising, when the
variable is determined to be the high cardinality variable and
the fixed variable type and when the determination is that rare
visible values occurred for the variable, assigning, by the
processor, a record identifier variable role to the variable.

9. The method of claim 5, wherein comparing the overflow
count value to the unique data value count values comprises:

computing a rarity value as a sum of the unique data value

count values divided by the overflow count value; and
comparing the computed rarity value to a value of a rare
value threshold,

wherein the computed rarity value less than the rare value

threshold results in a determination that rare visible val-
ues occurred for the variable.

10. The method of claim 5, further comprising, when the
variable is determined to be the high cardinality variable and
the fixed variable type and when the determination is that rare
visible values did not occur for the variable:

receiving, by the processor, a new value for the high car-

dinality threshold;

determining, by the processor, that the variable is the high

cardinality variable when the number of the plurality of
unique data values is greater than the new value for the
high cardinality threshold; and

when the variable is not determined to be the high cardi-

nality variable, assigning, by the processor, the class
variable role to the variable.

11. The method of claim 10, wherein comparing the over-
flow count value to the unique data value count values com-
prises:

computing a rarity value as a sum of the unique data value

count values divided by the overflow count value; and
comparing the computed rarity value to a value of a rare
value threshold,

wherein the computed rarity value less than the rare value

threshold results in a determination that rare visible val-
ues occurred for the variable.

12. A computer system comprising:

a processor; and

anon-transitory computer-readable medium encoded with

data processing instructions comprising instructions for

configuring the processor to

determine a variable type, unique data value count val-
ues, and an overflow count value for a variable,
wherein the unique data value count values include a

10

15

20

25

30

35

40

45

50

55

60

65

18

number of occurrences of each of a plurality of unique
data values for the variable in a data set, wherein the
overflow count value is a number of occurrences of
data values other than the plurality of unique data
values for the variable in the data set;

determine that the variable is a high cardinality variable
when a number of the plurality of unique data values
is greater than a value for a high cardinality threshold;

when the variable is not determined to be the high car-
dinality variable, assign a class variable role to the
variable;

when the variable is determined to be the high cardinal-
ity variable, determine whether or not the variable is a
numeric variable type based on the determined vari-
able type;

when the variable is determined to not be the numeric
variable type, compare the overflow count value to the
unique data value count values to determine whether
or not rare visible values occurred for the variable;
and

when the determination is that rare visible values
occurred for the variable, assign a record identifier
variable role to the variable.

13. The computer system of claim 12, wherein comparing
the overtlow count value to the unique data value count values
comprises:

computing a rarity value as a sum of the unique data value

count values divided by the overflow count value; and
comparing the computed rarity value to a value of a rare
value threshold,

wherein the computed rarity value less than the rare value

threshold results in a determination that rare visible val-
ues occurred for the variable.

14. The computer system of claim 12, wherein, when the
variable type is a character variable type, the variable is deter-
mined to not be the numeric variable type.

15. The computer system of claim 12, further comprising,
when the variable is determined to not be the numeric variable
type and the determination is that rare visible values did not
occur for the variable:

receiving, by the processor, a new value for the high car-

dinality threshold;

determining, by the processor, that the variable is the high

cardinality variable when the number of the plurality of
unique data values is greater than the new value for the
high cardinality threshold; and

when the variable is not determined to be the high cardi-

nality variable, assigning, by the processor, the class
variable role to the variable.
16. The computer system of claim 12, further comprising,
when the variable is determined to be the high cardinality
variable and to be the numeric variable type:
determining, by the processor, whether or not the variable
is a fixed variable type based on the variable type; and

when the variable is determined to not be the fixed variable
type, assigning, by the processor, an interval variable
role to the variable.

17. The computer system of claim 16, wherein determining
whether or not the variable is the fixed variable type is further
based on data values of the variable relative to a floor value or
a ceiling value of the variable type.

18. The computer system of claim 16, wherein the variable
is determined to be the fixed variable type when the variable
type is an integer.

19. The computer system of claim 16, further comprising,
when the variable is determined to be the high cardinality
variable and the fixed variable type and when the determina-

US 9,239,867 B2

19

tion is that rare visible values occurred for the variable,
assigning, by the processor, a record identifier variable role to
the variable.

20. The computer system of claim 16, wherein comparing
the overtlow count value to the unique data value count values
comprises:

computing a rarity value as a sum of the unique data value

count values divided by the overflow count value; and
comparing the computed rarity value to a value of a rare
value threshold,

wherein the computed rarity value less than the rare value

threshold results in a determination that rare visible val-
ues occurred for the variable.

21. The computer system of claim 16, further comprising,
when the variable is determined to be the high cardinality
variable and the fixed variable type and when the determina-
tion is that rare visible values did not occur for the variable:

receiving, by the processor, a new value for the high car-

dinality threshold;

determining, by the processor, that the variable is the high

cardinality variable when the number of the plurality of
unique data values is greater than the new value for the
high cardinality threshold; and

when the variable is not determined to be the high cardi-

nality variable, assigning, by the processor, the class
variable role to the variable.

22. The computer system of claim 21, wherein comparing
the overtlow count value to the unique data value count values
comprises:

computing a rarity value as a sum of the unique data value

count values divided by the overflow count value; and
comparing the computed rarity value to a value of a rare
value threshold,

wherein the computed rarity value less than the rare value

threshold results in a determination that rare visible val-
ues occurred for the variable.
23. A computer-program product tangibly embodied in a
machine-readable non-transitory storage medium and includ-
ing instructions configured to cause a data processing appa-
ratus to:
determine a variable type, unique data value count values,
and an overflow count value for a variable, wherein the
unique data value count values include a number of
occurrences of each of a plurality of unique data values
for the variable in a data set, wherein the overflow count
value is a number of occurrences of data values other
than the plurality of unique data values for the variable in
the data set;
determine that the variable is a high cardinality variable
when a number of the plurality of unique data values is
greater than a value for a high cardinality threshold;

when the variable is not determined to be the high cardi-
nality variable, assign a class variable role to the vari-
able;

when the variable is determined to be the high cardinality

variable, determine whether or not the variable is a
numeric variable type based on the determined variable
type;
when the variable is determined to not be the numeric
variable type, compare the overflow count value to the
unique data value count values to determine whether or
not rare visible values occurred for the variable; and

when the determination is that rare visible values occurred
for the variable, assign a record identifier variable role to
the variable.

15

20

25

30

40

45

50

55

65

20

24. The computer-program product of claim 23, wherein
comparing the overflow count value to the unique data value
count values comprises:

computing a rarity value as a sum of the unique data value

count values divided by the overflow count value; and
comparing the computed rarity value to a value of a rare
value threshold,

wherein the computed rarity value less than the rare value

threshold results in a determination that rare visible val-
ues occurred for the variable.

25. The computer-program product of claim 23, wherein,
when the variable type is a character variable type, the vari-
able is determined to not be the numeric variable type.

26. The computer-program product of claim 23, further
comprising, when the variable is determined to not be the
numeric variable type and the determination is that rare vis-
ible values did not occur for the variable, instructions config-
ured to cause the data processing apparatus to:

receive a new value for the high cardinality threshold;

determine that the variable is the high cardinality variable

when the number of the plurality of unique data values is
greater than the new value for the high cardinality
threshold; and

when the variable is not determined to be the high cardi-

nality variable, assign the class variable role to the vari-
able.

27. The computer-program product of claim 23, further
comprising, when the variable is determined to be the high
cardinality variable and to be the numeric variable type,
instructions configured to cause the data processing apparatus
to:

determine whether or not the variable is a fixed variable

type based on the variable type; and

when the variable is determined to not be the fixed variable

type, assign an interval variable role to the variable.

28. The computer-program product of claim 27, wherein
determining whether or not the variable is the fixed variable
type is further based on data values of the variable relative to
a floor value or a ceiling value of the variable type.

29. The computer-program product of claim 27, wherein
the variable is determined to be the fixed variable type when
the variable type is an integer.

30. The computer-program product of claim 27, further
comprising, when the variable is determined to be the high
cardinality variable and the fixed variable type and when the
determination is that rare visible values occurred for the vari-
able, instructions configured to cause the data processing
apparatus to assign a record identifier variable role to the
variable.

31. The computer-program product of claim 27, wherein
comparing the overflow count value to the unique data value
count values comprises:

computing a rarity value as a sum of the unique data value

count values divided by the overflow count value; and
comparing the computed rarity value to a value of a rare
value threshold,

wherein the computed rarity value less than the rare value

threshold results in a determination that rare visible val-
ues occurred for the variable.

32. The computer-program product of claim 27, further
comprising, when the variable is determined to be the high
cardinality variable and the fixed variable type and when the
determination is that rare visible values did not occur for the
variable, instructions configured to cause the data processing
apparatus to:

receive a new value for the high cardinality threshold;

US 9,239,867 B2

21

determine that the variable is the high cardinality variable
when the number of the plurality of unique data values is
greater than the new value for the high cardinality
threshold; and

when the variable is not determined to be the high cardi-

nality variable, assign the class variable role to the vari-
able.

33. The computer-program product of claim 32, wherein
comparing the overflow count value to the unique data value
count values comprises:

computing a rarity value as a sum of the unique data value

count values divided by the overflow count value; and
comparing the computed rarity value to a value of a rare
value threshold,

wherein the computed rarity value less than the rare value

threshold results in a determination that rare visible val-
ues occurred for the variable.

#* #* #* #* #*

10

15

22

